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Quantum Theory of the Hall Effect 

F. G h a b o u s s i  1 

Received August 12, 1996 

We discuss a model of both the classical and the integer quantum Hall effect 
which is based on a semiclassical SchriSdinger-Chera-Simons action, where the 
Ohm equations result as equations of motion. The quantization of the classical 
Chern-Simons part of action under typical quantum Hall conditions results in 
the quantized Hall conductivity. We show further that the classical Hall effect is 
described by a theory which arises as the classical limit of a theory of the quantum 
Hall effect. The model also explains the preference and the domain of the edge 
currents on the boundary of samples. 

1. I N T R O D U C T I O N  AND S U M M A R Y  

Recently, we discussed a model  of the integer quan tum Hall effect 
(IQHE) 2 according to which the quant izat ion of the Hall conductivi ty should 
result from the quantum electrodynamics in 2 + 1  dimensions  (Ghaboussi ,  
n.d.-a,b). In this semiclassical S c h r 6 d i n g e r - C h e r n - S i m o n s  model  the Hall 
conductivi ty o" H appears as the normalizat ion parameter of the C h e r n - S i m o n s  
action. 3 Furthermore,  we assumed there, in accord with the experimental  
results on the QHE, a vanishing longi tudinal  conductivi ty trL (see footnote 

2). Then  the Ohm equations of IQHE with quantized tIH are obtained as 
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2For a general review of the quantum Hall effect and its experimental setting see Prange and 
Girvin (1987), Macdonald (1989), Morandi (1992), and Janssen et al. (1994). 

3Tbe use of ~H as a normalization parameter of the Chern-Simons action is in accordance 
with the use of similar parameters in interacting systems of particles which then become 
proportional to trH in FQHE models (Semenof, 1988; Zhang, 1989). Recall that it is expected 
that noninteracting particles in quantum Hall samples result under proper conditions in the 
IQHE, whereas the interacting particle systems should be responsible for the fractional QHE 
(FQHE). In the last case it seems that, depending on the theoretical treatment of the question 
of the ground state, one is led to one of the above-mentioned models. 
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the equations of motion from the Schrrdinger-Chern-Simons action with 
quantized electromagnetic potentials (Ghaboussi, n.d.-a,b). 

Here we discuss a more general model for both the classical Hall effect 
(CHE) and the IQHE, where the related Ohm equations result as equations 
of motion also from a Schrrdinger-Chem-Simons action functional. Then 
the quantum Hall conditions (von Klitzing, 1995; Knott et  al., 1995) cause 
the transition of the Hall system to the quantum regime, where the necessary 
quantization of the electromagnetic potentials results in the quantized trH in 
the absence of trm. It is a model of noninteracting charge carriers for the 
IQHE with a semiclassical Schrrdinger-Chern-Simons action functional; 
hence we quantize not the Schrrdinger term, which represents the charge 
carder system, but only the Chern-Simons term, which represents the dynam- 
ics of the almost pure gauge potentials (Ghaboussi, n.d.-a,b). Thus, a second 
quantization of the Schrrdinger term in our model which corresponds to the 
interacting particle system should result after solution of the ground state in 
a FQHE model similar to known models (see footnote 3). 

Our model is based on the following standpoint on the theory of Hall 
effects: that because there are both CHE and QHE (IQHE and FQHE), the 
theory of the QHE must be the quantization of the "classical" theory of the 
CHE (Ghaboussi, n.d.-a, b). Furthermore, rigorous quantization of a system 
requires the knowledge of its action functional. Accordingly, we have to 
construct first a "classical" action for the CHE, from which the resulting 
equations of motion must explain the CHE behavior. On the other hand the 
"classical" Ohm equations (see footnote 2) are the only equations which 
describe the CHE. Thus, the action which should describe the CHE has to 
result in the Ohm equations as its equations of motion. This interpretation 
of the Ohm equations as the equations of motion which must result directly 
from an action functional is a new element of our standpoint. In all other 
models the Ohm equations are considered as a given relation in the sense of 
"material" or "phenomenological" equations. 4 

On the other hand, in view of the well-known fact that these Ohm 
equations are semiclassical relations with SchrOdinger-type current densities 
for electrons, the desired action for CHE also should be of the semiclassical 
type as in our model. Then, the canonical quantization of the classical part 
of this action for the case of noninteracting electrons must result in the 
quantum theory of the IQHE and also in the quantized Hall conductivity 
according to the IQHE. 

To investigate the relation between the QHE and the CHE, let us analyze 
first the Ohm equations for the QHE and the CHE These are given by 

4For a different model, where only the Ohm equations of the IQHE, but not of the CHE, are 
derived as equations of motion, see Frrhlich and Keder (1991). 
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jm = O'H~nmEn, ~'mn = --~nm = 1; m, n = 1, 2 (1) 

for the QHE, where r = en/B becomes quantized in units of e2/h. Here n 
is the global surface density of the charge carriers ("electrons") and B := B3 
is the applied magnetic field. 5 On the other hand, the Ohm equations for the 
CHE are given by 

jm = (YH~nmEn + ffLEm (2)  

with crL = cr0/[1 + (too'r) 2] and crH = cr0(toc'r)/[1 + (co~'r)2], where or0 = e2nx/ 
Ix, o~c := eB/Ix, and "r and Ix are, respectively, the mean free time and the 
mass of electrons. 6 

The key observation is that according to quantum mechanics (Landau 
and Lifschitz, 1976), the current density of electrons in a magnetic f ield 
without spin term and with C = 1 is given by (a)jm : =  (ieh/2Ix)[(Om6*)d~ 

- ~*(Omr -- (e2/Ix)Am~*r whereas the current density of electrons in the 
limit B --> 0, i.e., for toc'r < <  1, should be given by (b)jm := (ieh/2Ix)[(Om6*)~ 

- +*(0mt~)], both obeying the continuity equation (Landau and Lifschitz, 
1976). We deduce that relation (a) is valid in the integer quantum Hall regime 
(co~'r > >  1), where the external magnetic field is large, whereas relation (b) 
is valid in the classical Hall regime (tor < <  1), where the same external 
field is small or absent. 

The semiclassical Schr6dinger-Chern-Simons action functional in 2 + 
1 dimensions is the only action from which we can obtain the mentioned 
Ohm equations (1) and (2) as the equations of motion (see below) (Ghaboussi, 
n.d.-a,b), where crH plays the role of the normalization parameter of the 
classical Chern-Simons action. To see the relation of the quantization of the 
Hall system with the empirical quantum behavior under typical quantum Hall 
conditions (von Klitzing, 1995; Knott et al., 1995), let us recall that in a 
strong magnetic field the Hall conductivity crH becomes small according to 
its definition as given above. Precisely, in the quantum Hall limit, i.e., ~o~ 
> >  1, the crH and crL should be considered, according to their definitions 
given above, of the order (to~'r) -~ and (o~'r) -2 respectively, i.e., crH < <  1 

5Precisely, the total magnetic field acting on the Hall system described by the Schr6dinger- 
Chern-Simons action (9) is given by Btotal := Bexter~ + B(A,,), with B~xtemal > >  B(Am), where 
Bexte,~ is the external homogeneous strong magnetic field applied to the system. The B(Am) 
is the magnetic field arising from the dynamics of A m potentials, which is also responsible 
for the electric fields Era. The B(Am) is usually so small that coc'r < <  1 and so its influence 
on the conductivity is contained already in what is known under the classical Hall effect, 
since, to achieve the magnetic influence of the quantum Hall type one needs strong magnetic 
fields, such as those used in QHE experiments [see von Klitzing (1995), Knott et al. (1995), 
and references in footnote 2]. 

6Recall also that relation (2) can be obtained from relation (1) by an infinitesimal SO(2) 
transformation in the Em or in the Am space. The infinitesimal angle ~• = ~L/CrH becomes 
almost zero in the quantum Hall regime. See also footnote 2. 
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and (rt < <  trH or (rL --4 0. Moreover, in this limit the Hall conductivity is 
given by trH = nelB, so that for small n and large Bextemat the (rH becomes 
small. Thus, if we consider in our model a .  as the normalization parameter 
of the Chern-Simons action Scs (see footnote 3) and quantize this action 
according to the Schr6dinger representation (Ghaboussi, n.d.-a,b) 

~cs(A) ~ e i 'msc~  (3) 

then (rHScs also becomes small for relevant Scs actions in view of the above- 
mentioned smallness of ~, .  Therefore, for small a.Scs,  i.e. precisely for 
those a .  Scs which are comparable with h, the quantum behavior of the action 
becomes dominant (Feynman and Hibbs, 1965) and we encounter the integer 
quantum Hall regime manifested by the IQHE. Moreover, in this quantum 
limit the (rL becomes, as mentioned above, very small,  tending to zero, as 
expected in the QHE. 

Conversely, if the magnetic field is not strong, i.e. for toc'r < <  1, (r. 
and anScs become large or (rHScs > >  h and we have the classical regime, 
where the quantum fluctuations of the action are compensated (Feynman and 
Hibbs, 1965) and the original quantum theory reduces to its classical limit, 
which is the theory of the CHE. In this classical limit aL ~" (r0; thus both 
types of conductivity are no longer small, but have considerable magnitudes, 
since they are also present in the Ohm equations of the CHE (2). We neglect 
here the typical FQH conditions including the high mobility of particles in 
view of the fact that we consider only the IQHE. 

On the other hand, it is known that if one considers currents involved 
in the IQHE only as boundary currents, then most of experimental data can 
be understood in a satisfactory manner (von Klitzing, 1995; Knott et al., 
1995). It is a feature of the Chern-Simons ansatz in a manifold with a spatial 
boundary that the boundary currents are the only allowed ones according to 
the constraints of the theory under typical quantum Hall conditions. Therefore, 
for construction of a theoretical model for both the CHE and the IQHE one 
is left with the SchrOdinger-Chern-Simons action, from which we know 
already that it results, at least, in the Ohm equations for the CHE and the 
IQHE as the equations of motion (Ghaboussi, n.d.-a,b). 

2. T H E  CHERN-SIMONS ACTION FOR CLASSICAL AND 
QUANTUM HALL EFFECT 

The general action from which the Ohm equations of the CHE and the 
IQHE [(2) and (1)] can be obtained as the equations of motion is the following 
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Schr6dinger-Chern-Simons action defined on the (2 + 1)-dimensional mani- 
f o l d M =  E • R: 

S = ~ dt 4" ihOt - ~ (-ihOm - eAm) 2 - eAo d~ + h.c. 

( r H ~  
8 "rr e'~'~ A ,~ O f~ A.y (4) 

where A~(Xm, t) is still the classical electromagnetic potential, which remains 
classical in the classical Hall regime but must be quantized in the quantum 
Hall regime. Furthermore, {ct, 13, ~} = {0, 1, 2} and everywhere C = 1 and 
Om = OlOxm and we consider (in accordance with the experimental arrange- 
ments of the QHE) that E has a boundary. Furthermore, as already mentioned, 
the Schr6dinger term represents the mechanics of  the noninteracting particle 
system, whereas the Chern-Simons term represents the dynamics of the 
coupled electromagnetic potentials. 

Obviously, we use the (rH as the locally constant normalization parameter 
of the Chern-Simons action. We are justified because (YH can be considered 
as a dimensionless and locally constant quantity in 2 + 1 dimensions also 
in view of its well-known topological or global character. 7 Moreover, we 
suppressed the spin term within the usual SchrSdinger action for an "electron" 
in a magnetic field in view of the well-known fact about the QHE that spin 
degeneracy is not essential for the IQHE (see footnote 2). 

In view of the gauge freedom of Am we choose the gauge-fixing condition 
A0 = 0 to retain the true degrees of freedom of the electromagnetic fields 
in the action (4). Then the action reduces to 

1 eAm)2]~ h.c. ~ - ~ I d t I ~  t ~ * [ i h O t - - ~ ( - i h O m -  + 

8~r dt e"~A,~A~ 

(5) 

The equations of  motion for classical Am potentials which result from this 
action are 

e2n 
Jm - -  - -  Am = (rHenmA, (6) 

p. 

7This means that d~H = 0. Furthermore, recall also that both charge carrier density n in two 
dimensions and the B field are of dimension L -2. Thus, (rH = enlB becomes dimensionless. 
For further arguments in favor of the local constancy of (rH see Fr61ich and Kerler (1991). 
Also see footnotes 1 and 3. 
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where we used according to todr < <  1 in the classical regime the correspond- 
ing definition (b)jm := ( ieh/21x)[(Om~*)t~ - dd*(0m~)]. 

We introduce the gauge Am = Emr in (6), which is more appropriate for 
the case of low magnetic fields, i.e., precisely it is appropriate for the classical 
Hall regime with 00dr < < 1.8 It is equivalent to the relaxation-time approxima- 
tion, which is the usual approach in this case (Callaway, 1964). 9 Substituting 
Am = E m ,  in (6), we obtain the desired Ohm equations for the CHE 

Jm : O'L Em "1- ffHEnmEn (7) 

where we used crL ~ cI0 according to todr < <  1. 
Thus, we obtained the Ohm equations of  the CHE as the equations of 

motion from the action (4) in the classical Hall regime consistently, according 
to tOc'r < < 1. 

The quantization of the action (5) under typical IQH conditions (von 
Klitzing, 1995; Knott et  al . ,  1995), i.e., in the limit ~odr > >  1, results then 
in the action which is responsible for the Ohm equations of the IQHE, where 
one must use obviously the definition (a) for the current density in the 
quantum Hall regime according to COc'r > > 1. 

Recalling our previous analysis, we mention that the quantum regime 
of the Hall effect is related in a double sense to the strong exterior magnetic 
field which is applied to two-dimensional electronic systems: In the limit 
codr > >  1 the crH and cr L should be considered theoretically of the order 
(0%'0 -1 and (tOc'r) -2, respectively, i.e., cr H becomes small and trL tends to 
zero, as confirmed by experiments (von Klitzing, 1995; Knott e t  al . ,  1995). 
On the other hand, under typical quantum Hall conditions where the number 
or the density of electrons is small the CrH and CrHScs become smaller and 
so the latter becomes comparable with h, which results in the integer quantiza- 
tion of CIH, as also confirmed by experiments (von Klitzing, 1995; Knott et  

al . ,  1995). 
In other words, the 00r > >  1 limit together with small n corresponds 

to the quantum regime (yon Klitzing, 1995; Knott e t  al . ,  1995), where crHScs 
becomes comparable with h, whereas the codr < <  1 limit together with n 
around the usual electronic density in metals corresponds to the classical 
limit, where the action crHScs > >  h. Therefore, for large magnetic fields 
and small density of electrons, which are the typical quantum Hall conditions, 
the two-dimensional Hall system is in the IQHE regime (yon Klitzing, 1995; 

SRecall that in the presence of magnetic fields the well-known Landau gauge is given by Am 
= Bxne,,, (Landau and Lifschitz, 1976). 

9Recall also that the relaxation time -r is indeed introduced in this approximation to calculate 
the electric conductivity from the Ohm equations. One can show that the usual relaxation- 
time approximation results in the approximation AAm = EmAt ~ Emr, where the defining 
vanishing average velocity V = 0 is given according to the operator (z, = Pm -- e,~,,, 
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Knott et al., 1995) which is described by the same action (4) or (5) after 
gauge fixing: 

1;f [ 1 ] 
dt t~* ihO t - ~ ( - i h O  m - e A m )  2 I~ + h.c. (8) 

8ax dt emMmA~ 

but in view of (rHScs ~ h with A m potentials now obeying the usual quantiza- 
tion algebra (Witten, 1989; Jackiw, 1990; Dunne et al., 1989; Dunne and 
Treugenberger, 1989) 

[ftm(Xl, t), ft~(yt, t)] = - -  
4 7rih 

em~2(X - Y); X, Y ~ 22 (9) 
o- H 

which can be read off directly from the Chern-Simons action in (8). This 
means that ,Zim := OhilOAn, which is the usual polarization of the {Am} 
phase space. 

However, for practical use it is convenient to introduce the Schr6dinger 
representation ~(A) oc e(V~)~HScs of the Chern-Simons action 

oHI  
87r dt e~AmA. (10) 

after its quantization according to (9); hence W(A) must satisfy relation (9) 
in the sense of its eigenfunctions. 

To obtain W(A), we use the method introduced in our previous work on 
IQHE (Ghaboussi, n.d.-a,b). It is based on the representation of the state 
functions ~(A) in terms of the eigenstates of the quantum orbital angular 
momentum. For equivalent quantization of Scs and its SchrSdinger representa- 
tions see Witten (1989), Jackiw (1990), Dunne et al. (1989), and Dunne and 
Treugenberger (1989). 

Introducing polar coordinates in the phase space described by the action 
(10), we find that the quantum orbital angular momentum becomes L = 
- ihO,  (Landau and Lifschitz, 1976). Then ~(A) is given as the eigenstates 
of the operator/~ by 

xlt(A ) = F(R)e(i~Ht+ (11) 

Here F(R) is an arbitrary function of R and l = R 2 is the value of angular 
momentum of the system, which is a constant of motion according to the 
SO(2) symmetry of the system. We normalize the constant l -- 1. 
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Thus, the necessary single-valuedness of ~(A) forces the o-~ to be 

Crn = 0, 1,2 . . . . .  N , . . . ;  N E Z +  (12) 

where we restricted consideration to positive values, l~ 
Recall that the normalization parameter of the Wcs always becomes 

quantized as an integer in view of the single-valuedness of Wcs in its first 
quantization no matter what kind of quantization is performed (Witten, 1989; 
Jackiw, 1990; Dunne et al., 1989; Dunne and Treugenberger, 1989). 

Empirically, it is the mentioned typical IQH conditions (von Klitzing, 
1995; Knott et aL, 1995) which prepare the electrons, according to their 
density and mobility and the strength of the exterior magnetic fields, to be 
in the IQHE situation (see also the conclusion). 

The equations of motion for the A m potentials which result from the 
quantized action (8) for the noninteracting system of charge carriers, according 
to (11)-(12) and using the corresponding definition (a) for the current density 
in magnetic fields, are 

jm = gne.mEn (13) 

which are the desired Ohm equations with quantized {r H. 
It is obvious from the comparison between the quantized Chern-Simons 

action in units of h, i.e., crnSIh, and the SchrOdinger action in (8) that in the 
atomic units the crH should be considered in units of e21h, which is equivalent 
to a redefinition of the quantized A,, potentials absorbing the coupling constant 
e. Thus, we have obtained the quantized Ohm equations of the IQHE as the 
equations of motion from the quantized Schrrdinger-Chem-Simons action. 

To summarize the quantum and classical behavior in this model, let us 
recapitulate the analysis of the integer quantum and classical Hall conditions: 

If the Hall system is prepared with toc'r > >  1 and with small n, then 
the quantum modes of its action become dominant, but if it is prepared with 
tor < <  1 and with n around the density of CHE samples, then its classical 
modes become dominant. 

The theoretical description of this situation is in accord with our model, 
so that the general semiclassical action functional for both cases should be 
given by (4), where the SchrOdinger term remains the same in both cases in 
view of the noninteracting particles in the IQHE. Then, the action (4) with 
quantized Chern-Simons term describes the integer quantum Hall regime, 

1~ fractional quantization of the normalization parameter should be a result of the multival- 
uedness of the wave function of the electrons in the Schrrdinger term in its second quantization, 
which is related to the interacting electrons (see the models quoted in footnote 3). It is well 
known that the mentioned properties of electrons, such as mobility and also the strength of 
the exterior magnetic field, differ for FQHE samples (see footnote 2). 
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whereas the action (4) with classical Chern-Simons term describes the classi- 
cal Hall regime. 

In the first case the typical quantum Hall conditions, i.e., (oc'r > >  1, 
and small n cause the smallness of  erH so that erHScs becomes comparable 
with h. Thus the quantum modes of  the action erHScs which are represented 
by W(A) become dominant, requiring the quantization of  era, since the total 
quantum action results in the "quantum" Ohm equations with integrally 
quantized erH and vanishing erL, as shown above. 

In the second case the action is of  the order erHScs > >  h; therefore the 
classical limit of the Chern-Simons action, i.e., the classical Chern-Simons 
action, becomes dominant. Then the total action reduces to the semiclassical 
Chern-Simons-Schr td inger  action, which describe the semiclassical theory 
of the CHE, since it results in the "classical" Ohm equations, as shown above. 

Thus, in the theory of  the CHE, its action arises as the classical limit 
from the quantum action of the IQHE. 

3. T H E  E D G E  CURRENTS IN Q H E  

Obviously, the motion of  the system which is described by the action 
(8) together with the quantization relations (9)-(12) is constrained by the 
constraint 

--erHem~OmAn = et~*~ (14) 

with edd*~ := Jo- 
If we integrate the relation (14) over the sample surface and consider 

B : =  ~.nmOmAn as a constant field strength, then we obtain the well-known 
relation between the Hall conductivity and the magnetic field, namely 

err[ = ne/B (15) 

where n = (a) - l  f da (~*~)  is the global density of  charge carriers and a is 
the sample area. Recall that the relation (15) conforms with the general 
definition of erH in the limit (oc'r > > 1.1~ 

However, the constraint (14) influences the motion of the IQHE system 
in a way which is known from the experimental results on the IQHE. 

To see this let us note first some of the main experimental features of 
IQHE [as reviewed from von Klitzing (1995) and Knott et al. (1995)]: 

1. Most of the IQHE data can be understood in a satisfactory manner 
if one reduces the involved currents to the edge currents. 

2. The typical IQHE regime is related to very large B and small n. 

~J Recall also that tiH becomes tl n = nelB only in the quantum Hall limit, whereas in the 
classical Hall limit it is given by tiH= ti0to,.'r. 
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3. Under integer quantum Hall conditions the edge of  the Hall system 
is characterized by n --~ 0. 

4. For large current densities the IQHE cannot be simply described by 
edge currents located on the boundary, whereas low currents are transported 
by the edge channels. 

All these features of the IQHE can be understood if we take into account 
the constraint (14). Recall that, in view of the Ohm equations, the currents 
are restricted to those regions where the Am potentials are allowed to exist. 
Thus, the question of the edge currents is related to the question of the region 
where the A m potentials are defined. Moreover, according to the constraint 
(14), the potential Am becomes pure gauge potential with vanishing field 
strength if n ~ 0. 

This is the case if one has samples with small n and large B, for example, 
on the edges of a quantum Hall system. Thus, under these circumstances we 
should replace the constraint (14) by 

e"~OmAn ~ 0 (16) 

for systems under quantum Hall conditions (yon Klitzing, 1995; Knott et al., 
1995). Then Am potentials become pure gauge potentials, i,e., Am ~" ig-lOmg, 
where g is an element of the U(I) gauge group. Recall, however, that this 
is a local relation in quantum mechanics, and therefore 1. it should be valid 
only within the limit of the uncertainty relations and 2. a locally pure gauge 
potential has well-known geometric, globally well-defined and observable 
effects in quantum mechanics. 12 

On the other hand, the constraint tensor emnOmAn generates a gauge 
transformation A" -- Am + 0mk in the phase space of the Am potentials 
(Witten, 1989; Jackiw, 1990; Dunne et al., 1989; Dunne and Treugenberger, 
1989). Therefore, according to the constraint (16), one must identify A" = 
Am everywhere in the phase space. Furthermore, if, as in our case, ~ possesses 
a boundary, we must choose boundary conditions for Am and k on the bound- 
ary. We choose free boundary conditions for Am, but k = 0 on the boundary. 
A reason for this choice is that the Chern-Simons action is not invariant 
under gauge transformations that do not vanish on the boundary (Witten, 
1989; Jackiw, 1990; Dunne et al., 1989; Dunne and Treugenberger, 1989). 

Accordingly, it must be required that A~ = Am for any k which vanishes 
on the boundary 0~. The only pure Am gauge potentials which obey this 

12It is this discrepancy between the local and global properties of the pure gauge potential 
which makes a classical or even a semiclassical understanding of QHE difficult. The quantum 
mechanical, i.e., global or invariant, character of the pure gauge potential is given by its line 
integral, which is the phase of the wave function and results in the flux quantization. 
Furthermore, we mean here always a pure gauge potential of the electromagnetic or U(I) 
type in a multiply connected region. 
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additional condition are those restricted to be defined only on the boundary 
(Witten, 1989; Jackiw, 1990; Dunne et al., 1989; Dunne and Treugenberger, 
1989). In other words, the only A m potentials obeying both restrictions caused 
by the constraint (16) are restricted to exist on the boundary region of E. 
Then the currentsjm should be considered also to be restricted to the boundary 
region of E, i.e., to the so-called edge currents. Accordingly, under quantum 
Hall conditions (von Klitzing, 1995; Knott et  al., 1995), the edge currents 
are the preferred ones. 

It is important to mention that if we consider the restrictions of the 
potentials and currents to the boundary or to the edge of the Hall system 
"quantum mechanically," then there is an uncertainty of the position of the 
currents, or so to say there is an uncertainty of the "quantum mechanical" 
edge A(0E) in view of the Heisenberg uncertainty relations. Thus, if we 
consider the uncertainty of momentum equal to (2mAE) u2 with AE = Eo = 
htoJ2, the uncertainty of the mentioned edge or the width of the currents 
orbit is given by AX = (h leB)  1/2, which is the magnetic length IB, since the 
edge current, according to its empirical definition, is the current which in 
the ideal case flows close to the edge within the length scale of the magnetic 
length (von Klitzing, 1995; Knott et  al., 1995). Moreover, this circumstance 
shows also that the constraint (16) should be satisfied within the uncertainty 
dictated by the energy-time uncertainty relation, since AE ~ B in the Landau 
levels (Landau and Lifschitz, 1976). 

On the other hand, if n is large for large transport currents the right- 
hand side of the constraint (14) and thereby also the field strength in (14) 
are obviously nonvanishing and the IQHE breaks down, as shown by early 
experiments (von Klitzing, 1995; Knott et  al.,  1995). 

4. CONCLUSION 

We have presented a model of IQHE based on a noninteracting system 
of charge carriers coupled to an electromagnetic potential in 2 + 1 dimensions. 
There are strong hints that the FQHE, which is believed to be a many-particle 
effect, i.e., to involve interacting particles, should result from the second 
quantization of the Schrrdinger field of charge carriers involved in an action 
similar to the one used in this model (see footnote 3). Hence, the conformity 
of our model for the IQHE with an earlier model of the FQHE (see footnote 
3) is a hint about the possibility that, if one considers a proper modification 
of our model for the case of interacting charge carriers, then after the second 
quantization of the Schr/Sdinger term in our action for the interacting ("many- 
particle") system should arrive at a theory of the FQHE. However, this is 
possible if one can solve the problem of the ground state of interacting 
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part ic les  in such mode l s  (see footnote 3). We  discuss  the second quant izat ion 
o f  our  model  and the resul t ing fract ional i ty  e l sewhere  (Ghabouss i ,  n.d.-c).  
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